- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Miceli, Antonino (2)
-
Babu, Anakha V. (1)
-
Boesenberg, Ulrike (1)
-
Cherukara, Mathew J. (1)
-
Di, Zichao (1)
-
Evers, Jörg (1)
-
Geloni, Gianluca Aldo (1)
-
Gerharz, Miriam (1)
-
Grech, Christian (1)
-
Guetg, Marc (1)
-
Hallmann, Jörg (1)
-
Hippler, Willi (1)
-
Holt, Martin (1)
-
Jo, Wonhyuk (1)
-
Kandel, Saugat (1)
-
Kocharovskaya, Olga (1)
-
Kocharyan, Vitali (1)
-
Kolodziej, Tomasz (1)
-
Kujala, Naresh (1)
-
Leupold, Olaf (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Modern scanning microscopes can image materials with up to sub-atomic spatial and sub-picosecond time resolutions, but these capabilities come with large volumes of data, which can be difficult to store and analyze. We report the Fast Autonomous Scanning Toolkit (FAST) that addresses this challenge by combining a neural network, route optimization, and efficient hardware controls to enable a self-driving experiment that actively identifies and measures a sparse but representative data subset in lieu of the full dataset. FAST requires no prior information about the sample, is computationally efficient, and uses generic hardware controls with minimal experiment-specific wrapping. We test FAST in simulations and a dark-field X-ray microscopy experiment of a WSe2film. Our studies show that a FAST scan of <25% is sufficient to accurately image and analyze the sample. FAST is easy to adapt for any scanning microscope; its broad adoption will empower general multi-level studies of materials evolution with respect to time, temperature, or other parameters.more » « less
-
Shvyd’ko, Yuri; Röhlsberger, Ralf; Kocharovskaya, Olga; Evers, Jörg; Geloni, Gianluca Aldo; Liu, Peifan; Shu, Deming; Miceli, Antonino; Stone, Brandon; Hippler, Willi; et al (, Nature)Abstract Resonant oscillators with stable frequencies and large quality factors help us to keep track of time with high precision. Examples range from quartz crystal oscillators in wristwatches to atomic oscillators in atomic clocks, which are, at present, our most precise time measurement devices1. The search for more stable and convenient reference oscillators is continuing2–6. Nuclear oscillators are better than atomic oscillators because of their naturally higher quality factors and higher resilience against external perturbations7–9. One of the most promising cases is an ultra-narrow nuclear resonance transition in45Sc between the ground state and the 12.4-keV isomeric state with a long lifetime of 0.47 s (ref. 10). The scientific potential of45Sc was realized long ago, but applications require45Sc resonant excitation, which in turn requires accelerator-driven, high-brightness X-ray sources11that have become available only recently. Here we report on resonant X-ray excitation of the45Sc isomeric state by irradiation of Sc-metal foil with 12.4-keV photon pulses from a state-of-the-art X-ray free-electron laser and subsequent detection of nuclear decay products. Simultaneously, the transition energy was determined as$${\mathrm{12,389.59}}_{+0.12\left({\rm{syst}}\right)}^{\pm 0.15\left({\rm{stat}}\right)}\,{\rm{eV}}$$ with an uncertainty that is two orders of magnitude smaller than the previously known values. These advancements enable the application of this isomer in extreme metrology, nuclear clock technology, ultra-high-precision spectroscopy and similar applications.more » « less
An official website of the United States government
